博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Openjudge NOI题库 数论185 反正切函数的应用
阅读量:4991 次
发布时间:2019-06-12

本文共 1686 字,大约阅读时间需要 5 分钟。

Openjudge-185反正切函数的应用

185:反正切函数的应用总时间限制: 1000ms内存限制: 65536kB描述反正切函数可展开成无穷级数,有如下公式 (其中0 <= x <= 1) 公式(1)使用反正切函数计算PI是一种常用的方法。例如,最简单的计算PI的方法:    PI=4arctan(1)=4(1-1/3+1/5-1/7+1/9-1/11+...) 公式(2)然而,这种方法的效率很低,但我们可以根据角度和的正切函数公式:    tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)*tan(b)] 公式(3)通过简单的变换得到:    arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)] 公式(4)利用这个公式,令p=1/2,q=1/3,则(p+q)/(1-pq)=1,有    arctan(1/2)+arctan(1/3)=arctan[(1/2+1/3)/(1-1/2*1/3)]=arctan(1)使用1/2和1/3的反正切来计算arctan(1),速度就快多了。我们将公式(4)写成如下形式    arctan(1/a)=arctan(1/b)+arctan(1/c)其中a,b和c均为正整数。    我们的问题是:对于每一个给定的a(1 <= a <= 60000),求b+c的值。我们保证对于任意的a都存在整数解。如果有多个解,要求你给出b+c最小的解。输入    输入文件中只有一个正整数a,其中 1 <= a <= 60000。输出    输出文件中只有一个整数,为 b+c 的值。样例输入1样例输出5

题意:对于每一个给定的a1 <= a <= 60000),保证存在整数解b,c满足:

         p=1/b

         q=1/c

         r=(p+q)/(1-pq)=1/a

         求整数b,c且输出最小的b+c。

  

过程:

数论分析——

/*

目标1)——题目问b+c,我们就把b+c表示出来

*/

经整理,

         r的分子:(p+q)=1/b + 1/c=(b+c)/bc

         r的分母:(1-pq)=1 - 1/bc=(bc-1)/bc

         r=(p+q)/(1-pq)=(b+c)/(bc-1)

         a=1/r=(bc-1)/(b+c)

         b+c=(bc-1)/a①

题目要求b+c最小整数解,

即求整数b,c使得bc-1|a并且bc-1最小。②

此时尝试从信息学角度考虑,我们的算法将枚举b,c以满足上述条件,

但是双变量的枚举将造成O(n^2)的时间复杂度,我们希望减少一个枚举量

所以——

 

目标2)——尝试减少一个枚举量,如将b移动至等号一边

         a(b+c)=bc-1

         ab+ac=bc-1

         ac+1=bc-ab

         b=(ac+1)/(c-a)①

——嘿嘿,只需要枚举c即可

         又因为b,c为正整数,即b,c > 0,

         所以枚举整数c,  只要c满足:使得b是个整数,取b+c最小值即可。

         来来来,我们确定一下枚举范围:

                  其中c1使得。。。。。

                   c2使得。。。。。

Oh!!Oh!!Oh!!!

出事故了!!

         在递减枚举c的时候,b的单调性不明朗,c的枚举范围怎么确定呀?!

         原因就在:①式等号右边,分子分母都存在枚举量,影响单调性

所以——

 

目标3)——将①式等号右边的枚举量统一放在 分子or分母 处

         这时候我们将用到枚举中一个非常重要的技巧——改变枚举量

         因为c>a

         我们惊奇的发现①中分母为(c-a),

直觉告诉我们只需要设c=a+x,分母就是(c-a)=(a+x-a)=x,目标三就达成啦*^ ~ ^*

于是令c=a+x,

①  ==>   b=(aa+ax+1)/x=a+(aa+1)/x

哇,多么美妙的单调减函数呀~

故,枚举x from aa+1 to 1

满足x使得b是个整数,立即输出吧~

代码时间复杂度O(a^2)

 

算法分析结束!!Conguatulations~~

 

代码建立——emm还没来得及写代码……

 

转载于:https://www.cnblogs.com/CXSheng/p/7449499.html

你可能感兴趣的文章
从程序员转向淘宝店主的探索
查看>>
openstack 中国联盟公开课參会总结
查看>>
约瑟夫环问题详解 (c++)
查看>>
Ubuntu 配置VNC以及使用VNC连接时,无法显示系统菜单栏,解决方法
查看>>
BZOJ.3990.[SDOI2015]排序(DFS)
查看>>
hdu 1358
查看>>
“-fembed-bitcode is not supported on versions of iOS prior to 6.0” 错误
查看>>
[转]jquery mobile中redirect重定向问题
查看>>
[django]表格的添加与删除实例(可以借鉴参考)
查看>>
Mockito一个采用Java编写用于单元测试的Mocking框架
查看>>
把elipse非maven的Struts2+Spring+Ibatis项目导入Idea中
查看>>
SVGImageView
查看>>
Android UI 优化 使用<include/>和 <merge />标签
查看>>
linux命令--使用fsck修复文件系统
查看>>
洛谷 P2324 [SCOI2005]骑士精神
查看>>
leetcode(64)最小路径和
查看>>
Select文字居右显示
查看>>
mycat操作MySQL第一篇:全局表
查看>>
MySQL数据库表分区
查看>>
python多个装饰器的执行顺序
查看>>